Skip to content

DCC Partitions

SLURM partitions are separate queues that divide up a cluster's nodes based on specific attributes. Each partition has its own constraints, which control which jobs can run in it. There are many DCC partitions. Access to each partition is restricted based on your slurm account. Users may have multiple slurm accounts and must specify the correct slurm account to gain access to restricted partitions.

General use DCC Partitions

  • common for jobs that will run on the DCC core node
  • gpu-common for jobs that will run on DCC GPU nodes
  • scavenger for jobs that will run on lab-owned nodes in “low priority” (kill and requeue preemption).
  • scavenger-gpu for GPU jobs that will run on lab-owned nodes in “low priority” (kill and requeue preemption)
  • courses and courses-gpu are special paritions used to support Duke courses. You must have an account=coursess25 to access these partitions. If you are only part of the DCC through a course, you will not be able to use the common or gpu-common partitions.
  • interactive for debugging and testing scripts. This should be limited to short interactive sessions or short-duration tests and is not intended for use in general analyses. Default resources are low. See below for partition limits per user.

Note: If a partition is not specified, the default partition is the common partition.

Duke Compute Account Limits

These limits are subject to change.

Duke Compute Cluster Partition Limits Default Value
Max running Mem per user account 1.5TB
Max running CPUs per user account 400
Max queued jobs per user per account 400

Parition Limits Per User

Partition Name Max CPU Max Memory (GB)
interactive 10 64

Configuration

Hardware

Partition Name Number of Nodes Processors RAM (GB) GPU Max Walltime (days-hours:minutes:seconds)
common 57 4844 37791 -- 90-00:00:00
common-gpu 32 424 3354 34 2-00:00:00
scavenger 88 7502 48078 -- 90-00:00:00
scavenger-gpu 187 3643 24283 215 7-00:00:00
courses 50 4200 23334 -- 7-00:00:00
courses-gpu 10 840 4666 20 2-00:00:00
compalloc 4 496 3975 -- 30-00:00:00
interactive 61 5340 42673 -- 1-00:00:00

GPUs

GPU Type GPU Full Name VRAM (GB) GPU per Node Number of Nodes with GPU Config Partitions
2080 nvidia_geforce_rtx_2080_ti 1 7 common-gpu
2080 nvidia_geforce_rtx_2080_ti 3 1 common-gpu
5000_ada nvidia_rtx_5000_ada_generation 1 24 common-gpu
2080 nvidia_geforce_rtx_2080_ti 1 67 scavenger-gpu
2080 nvidia_geforce_rtx_2080_ti 4 2 scavenger-gpu
5000_ada nvidia_rtx_5000_ada_generation 1 4 scavenger-gpu
6000_ada nvidia_rtx_6000_ada_generation 1 24 scavenger-gpu
6000_ada nvidia_rtx_6000_ada_generation 4 1 scavenger-gpu
a5000 nvidia_rtx_a5000 1 68 scavenger-gpu
a5000 nvidia_rtx_a5000 4 3 scavenger-gpu
a6000 nvidia_rtx_a6000 1 8 scavenger-gpu
p100 tesla_p100-pcie-16gb 2 10 scavenger-gpu

Useful SLURM commands for resources

These commands can be used to view cluster resources.

General partition info

  • scontrol show partition partitionName will give you general information about a specific partition.

Example for the common partition:

(base) rm145@dcc-login-02  ~ $ scontrol show partition common
PartitionName=common
   AllowGroups=ALL DenyAccounts=courses,coursess25,panlab AllowQos=ALL
   AllocNodes=ALL Default=YES QoS=N/A
   DefaultTime=NONE DisableRootJobs=NO ExclusiveUser=NO ExclusiveTopo=NO GraceTime=0 Hidden=NO
   MaxNodes=UNLIMITED MaxTime=90-00:00:00 MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIMITED MaxCPUsPerSocket=UNLIMITED
   Nodes=dcc-comp-[01-10],dcc-core-[01-12,14-41,43-49]
   PriorityJobFactor=10 PriorityTier=10 RootOnly=NO ReqResv=NO OverSubscribe=NO
   OverTimeLimit=NONE PreemptMode=GANG,REQUEUE
   State=UP TotalCPUs=4844 TotalNodes=57 SelectTypeParameters=NONE
   JobDefaults=(null)
   DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED
   TRES=cpu=4844,mem=38698635M,node=57,billing=4844

Specific GPU info per partition

scontrol show node `sinfo -h -r -p partitionName -o %N` | grep Gres | sort | uniq -c

Example for GPUs in the common-gpu partition:

rm145@dcc-login-05  ~ $ scontrol show node `sinfo -h -r -p gpu-common -o %N` | grep Gres | sort | uniq -c
      7    Gres=gpu:2080:1
      1    Gres=gpu:2080:3
     24    Gres=gpu:5000_ada:1